3 research outputs found

    Nanostructured tungsten as a first wall material for the future nuclear fusion reactors

    Get PDF
    The lack of materials able to withstand the severe radiation conditions (high thermal loads and atomistic damage) expected in fusion reactors is the actual bottle neck for fusion to become a reality. The main requisite for plasma facing materials (PFM) is to have excellent structural stability since severe cracking or mass loss would hamper their protection role which turns out to be unacceptable. Additional practical requirements for plasma facing materials are among others: (i) high thermal shock resistance, (ii) high thermal conductivity (iii) high melting point (iv) low physical and chemical sputtering, and (v) low tritium retention

    Capabilities of Nanostructured Tungsten for Plasma Facing Material

    Get PDF
    One of the bottle necks for fusion to become a reality is the lack of materials able to withstand the harsh conditions taken place in a reactor environment. In particular, plasma facing materials (PFM) have to resist large radiation fluxes and thermal loads. Nowadays, tungsten is one of the most attractive materials proposed for PFM. However, it is known that the irradiation of tungsten with H leads to surface blistering and subsequent cracking and exfoliation which is unacceptable. In particular, these effects have been observed to be more severe when W is subjected to pulse irradiation

    Morphological and microstructural characterization of nanostructured pure a-phase W coatings on a wide thickness range

    Full text link
    Nanostructured tungsten (nanoW) coatings have been deposited by DC magnetron sputtering. First, the influence of the sputtering power on the adhesion of the coatings to the substrate was investigated by depositing coatings at powers varying from 30 up to 220 W. Non-delaminated coatings were achieved at powers ≤50 W. Second, the influence of coating thickness on the morphological, microstructural and mechanical properties was investigated for films deposited at 50 W with thicknesses varying from 30 nm up to ∼4.0 um. SEM images reveal that all the films are highly compact, consisting of nanometer sized columns that grow perpendicular to the substrate. XRD data evidence that films are monophasic, being made of pure a-phase. All coatings show compressive stress and low micro-strain. Nanoindentation tests show that coatings have a hardness higher than that reported for coarse grained W. No significant dependence of the previous properties on coating thickness was observed. Finally, the influence of the substrate on coatings properties was studied, by depositing a W coating at a power of 50 W on a commercial steel substrate: no significant dependence was found
    corecore